Kuadratdapat dicari dengan adanya nilai atau menggunakan cara faktorisasi sehingga metode atau cara dapt menyelesaikan persamaan kuadrat yang sempurna. Penyelesaian persamaan kuadrat pada umumnya memakai rumus adalah sebagai berikut: (x+p) 2 = x 2 + 1px + p 2; Kemudian ubah kedalam bentuk persamaannya (x+p) 2 = q. Penyelesaian: (x+p) 2 = - q
Persamaan kuadrat adalah suatu persamaan yang memiliki derajat orde dua. Persamaan kuadrat yang biasanya kita temukan dalam bentuk ax$^2$ + bx + c = 0, bisa kita temukan dalam bentuk logaritma, bahkan dalam bentuk perbandingan trigonometri yaitu sinus sin, cosinus cos dan tangen tan. Nah, kali ini kita akan membahas persamaan kuadrat dalam sinus, cosinus, dan tangen. Sama dengan persamaan kuadrat pada umumnya, persamaan kuadrat dalam bentuk trigonometri bisa diselesaikan dengan tiga cara yaitu memfaktorkan, melengkapkan kuadrat sempurna, dan rumus kuadrat atau yang lebih dikenal dengan rumus abc. Bentuk umum persamaan kuadrat dalam bentuk sinus, kosinus, dan tangen dapat berbentuk sebagai berikut. asin$^2$x$^o$ + bsin$^o$ + c = 0 acos$^2$x$^o$ + btan$^o$ + c = 0 atan$^2$x$^o$ + btan$^o$ + c = 0 Untuk menyelesaikan persamaan-persamaan kuadrat di atas, langkah pertama adalah dengan membuat pemisalan untuk perbandingan trigonometrinya. Kita misalkan saja dengan p, maka bentuk umum persmaan kuadrat di atas akan menjadi ap$^2$ + bp + c = 0 baik untuk sinus, cosinus maupun tangen. Kemudian kita tentukan nilai p yang memenuhi. Setelah didapat nilai p, kita kembalikan p menjadi perbendingan trigonometri dan kita akan memperoleh persamaan trigonometri sederhana. Terakhir kita selesaikan persmaan tersebut dengan cara yang dapat di baca pada artikel ini. Namun, sebelum menentukan penyelesaian dari persmaan kuadrat di atas, ada syarat yang harus dipenuhi agar persamaan kuadrat di atas mempunyai penyelesaian. Untuk persamaan kuadrat dalam sinus dan cosinus, ada dua syarat yang harus dipenuhi yaitu Syarat perlu, D ≥ 0 Syarat cukup, -1 ≤ p ≤ 1 Sedangkan, untuk persamaan kuadrat dalam tangen, hanya memerlukan satu syarat yang harus dipenuhi yaitu Syarat perlu, D ≥ 0 Dengan D adalah diskriminan yang nilainya dapat ditentukan dengan D = b$^2$ - 4ac Sebagai contoh, apakah sin$^2$x$^o$ + 7sin$^o$ + 12 = 0 mempunyai penyelesaian? Penyelesaian Misalkan sinx$^o$ = p, maka persamaanya dapat dtulis menjadi p$^2$ + 7p + 12 = 0 D = b$^2$ - 4ac D = 7$^2$ - 4112 D = 49 - 48 D = 1 D > 0, syarat perlu terpenuhi p$^2$ + 7p + 12 = 0 p + 4p + 3 = 0 p + 4 = 0 atau p + 3 = 0 p = -4 p = -3 Nilai p < -1 Syarat cukup tidak terpenuhi Maka, dapat disimpulkan jika persamaan sin$^2$x$^o$ + 7sin$^o$ + 12 = 0 tidak mempunyai penyelesaian. Jika telah memahami syarat tersebut, sekarang kita lanjutkan dengan contoh soal persamaan kuadrat dalam bentuk trigonometri yang dapat diselesaikan. Contoh 1 Tentukan himpunan penyelesaian persamaan trigonometri cos$^2$x$^o$ - cos$^o$ - 2 = 0 dalam interval 0 ≤ x ≤ 360! Penyelesaian Misalkan cosx$^o$ = p maka persamaanya dapat ditulis menjadi p$^2$ - p - 2 = 0 p + 1p - 2 = 0 p = -1 atau p = 2 Jika p = -1, maka cosx$^o$ = -1 cosx$^o$ = cos 180$^o$ Untuk, x = 180$^o$ + k × 360$^o$ k = 0 → x = 180$^o$ + 0 × 360$^o$ = 180$^o$ Untuk, x = -180$^o$ + k × 360$^o$ k = 1 → x = -180$^o$ + 1 × 360$^o$ = 180$^o$ Jika p = -2, maka tidak memenuhi karena p < -1 syarat cukup tidak terpenuhi Jadi, penyelesaiannya adalah {180$^o$} Selain, bentuk-bentuk persamaan, seperti di atas ada beberapa kasus yang mengharuskan kita untuk mengubah suatu persmaan trigonometri yang dapat diubah menjadi persmaan kuadrat dalam sinus, cosinus, dan tangen. Untuk mempermudah mengubah persmaan yang demikian maka kita dapat menggunakan beberapa rumus trigonometri berikut. sin x$^o$ = $\frac{1}{cosec x^o}$ cos x$^o$ = $\frac{1}{sec x^o}$ tan x$^o$ = $\frac{1}{tan x^o}$ tan x$^o$ = $\frac{sin x^o}{cos x^o}$ cot x$^o$ = $\frac{cos x^o}{sin x^o}$ sin$^2$x$^o$ + cos$^2$x$^o$ = 1 1 + tan$^2$ x$^o$ = sec$^2$ x$^o$ 1 + cot$^2$ x$^o$ = cosec$^2$ x$^o$ sin 2x$^o$ = 2sin x$^o$cos x$^o$ cos 2x$^o$ = cos$^2$ x$^o$ - sin$^2$ x$^o$ cos 2x$^o$ = 1 - 2sin$^2$ x$^o$ cos 2x$^o$ = 2cos$^2$ x$^o$ - 1 tan 2x$^o$ = $\frac{2tan x^o}{1 - tan^2 x^o}$ Untuk lebih jelasnya, berikut akan disajikan contoh soal persamaan trigonometri beserta penyelesaiannya Contoh 2 Tentukan himpunan penyelesaian persamaan trigonometri cos 2x$^o$ - 3sin x$^o$ - 1 = 0 dalam interval 0 ≤ x ≤ 360! Penyelesaian cos 2x$^o$ - 3sin x$^o$ - 1 = 0 1 - 2sin$^2$ x$^o$ - 3sin x$^o$ - 1 = 0 - 2sin$^2$ x$^o$ - 3sin x$^o$ = 0 - sin x$^o$ 2sin x$^o$ + 3 = 0 tidak dilakukan pemisalan p, karena persamaan sudah sederhana -sin x$^o$ = 0 atau 2sin x$^o$ + 3 = 0 sin x$^o$ = 0 sin x$^o$ = -$\frac{3}{2}$ Jika, sin x$^o$ = 0 maka sin x$^o$ = 0$^o$ Untuk, x = 0$^o$ + k × 360$^o$ k = 0 → x = 0$^o$ + 0 × 360$^o$ = 0$^o$ k = 1 → x = 0$^o$ + 1 × 360$^o$ = 360$^o$ Untuk, x = 180$^o$ - 0$^o$ + k × 360$^o$ k = 0 → x =180$^o$ - 0$^o$ + 0 × 360$^o$ = 180$^o$ Jika sin x$^o$ = -$\frac{3}{2}$, persamaan tidak mempunyai penyelesaian karena sin x$^o$ < -1 Jadi, himpunan penyelesaianya adalah {0$^o$, 180$^o$, 360$^o$} Contoh 3 Tentukan Tentukan himpunan penyelesaian persamaan trigonometri 2cos$^2$ 2x$^o$ + 2sin$^2$ x$^o$ - 1 = 0 dalam interval 0 ≤ x ≤ 2𝞹! Penyelesaian 2cos$^2$ 2x$^o$ + 2sin$^2$ x$^o$ - 1 = 0 2cos$^2$ 2x$^o$ - 1 - 2sin$^2$ x$^o$ = 0 2cos$^2$ 2x$^o$ - cos$^2$ 2x$^o$ = 0 cos 2x$^o$2cos 2x$^o$ - 1 = 0 cos 2x$^o$ = 0 atau cos 2x$^o$ = $\frac{1}{2}$ Jika cos 2x$^o$ = 0 maka cos 2x$^o$ = $\frac{𝞹}{2}$ Untuk 2x = $\frac{𝞹}{2}$ + k × 2𝞹 atau x = $\frac{𝞹}{4}$ + k × 𝞹 k = 0 → x = $\frac{𝞹}{4}$ + 0 × 𝞹 = $\frac{𝞹}{4}$ k = 1 → x = $\frac{𝞹}{4}$ + 1 × 𝞹 = $\frac{5𝞹}{4}$ Untuk 2x = -$\frac{𝞹}{2}$ + k × 2𝞹 atau x = -$\frac{𝞹}{4}$ + k × 𝞹 k = 1 → x = -$\frac{𝞹}{4}$ + 1 × 𝞹 = $\frac{3𝞹}{4}$ k = 2 → x = -$\frac{𝞹}{4}$ + 2 × 𝞹 = $\frac{7𝞹}{4}$ Jika cos 2x$^o$ = $\frac{1}{2}$ maka cos 2x$^o$ = $\frac{𝞹}{3}$ Untuk 2x = $\frac{𝞹}{3}$ + k × 2𝞹 atau x = $\frac{𝞹}{6}$ + k × 𝞹 k = 0 → x = $\frac{𝞹}{6}$ + 0 × 𝞹 = $\frac{𝞹}{6}$ k = 1 → x = $\frac{𝞹}{6}$ + 1 × 𝞹 = $\frac{7𝞹}{6}$ Untuk 2x = -$\frac{𝞹}{3}$ + k × 2𝞹 atau x = -$\frac{𝞹}{6}$ + k × 𝞹 k = 1 → x = -$\frac{𝞹}{6}$ + 1 × 𝞹 = $\frac{5𝞹}{6}$ k = 2 → x = -$\frac{𝞹}{6}$ + 2 × 𝞹 = $\frac{11𝞹}{6}$ Jadi, himpunan penyelesaiannya adalah {$\frac{𝞹}{6}$, $\frac{𝞹}{4}$, $\frac{3𝞹}{4}$, $\frac{5𝞹}{6}$, $\frac{7𝞹}{6}$, $\frac{5𝞹}{4}$, $\frac{7𝞹}{4}$, $\frac{11𝞹}{6}$} Contoh 4 Tentukan himpunan penyelesaian persamaan trigonometri tan x$^o$ + cot x$^o$ = -2 dalam interval 0 ≤ x ≤ 360! Penyelesaian tan x$^o$ + cot x$^o$ = -2 tan x$^o$ + $\frac{1}{tan x^o}$ = -2 tan$^2$ x$^o$ + 1 = -2tan x$^o$ tan$^2$ x$^o$ + 2tan x$^o$ + 1 = 0 tan x$^o$ + 1$^2$ = 0 tan x$^o$ + 1 = 0 tan x$^o$ = -1 tan x$^o$ = 135$^o$ x = 135$^o$ + k × 180$^o$ k = 0 → x = 135$^o$ + 0 × 180$^o$ = 135$^o$ k = 1 → x = 135$^o$ + 1 × 180$^o$ = 315$^o$ Jadi, himpunan penyelesaianya adalah {135$^o$, 315$^o$} Demikianlah tadi mengenai Menyelesaikan Persamaan Kuadrat dalam Sinus, Kosinus, dan Tangen, semoga bermanfaat.
Persamaantrigonometri terkadang ada yang berbentuk persamaan kuadrat, atau mengharuskan kita untuk mengubah bentuknya menjadi persamaan kuadrat sehingga penyelesaian bisa kita peroleh dengan menggunakan aturan dalam persamaan kuadrat.
Math SMAHomeTeacherKelas XKelas XIMatematika Wajib XIMatematika Minat XIKD. 1 Persamaan TrigonometriReview TrigonometriSudut Khusus dan KuadranGrafik TrigonometriIdentitas TrigonometriPersamaan Trigonometri sederhanaPersamaan Trigonometri dengan IdentitasnyaPersamaan Trigonometri Bentuk KuadratKD. 2 Jumlah dan perkalian TrigonometriKD3. LingkaranKD4. PolinomialKelas XIIGaleriMath SMAHomeTeacherKelas XKelas XIKelas XIIGaleriMore11 PERSAMAAN TRIGONOMETRI Bentuk Kuadrat dan updated Report abuse
Nah kali ini kita akan membahas persamaan kuadrat dalam sinus, cosinus, dan tangen. Sama dengan persamaan kuadrat pada umumnya, persamaan kuadrat dalam bentuk trigonometri bisa diselesaikan dengan tiga cara yaitu 1. memfaktorkan, 2.melengkapkan kuadrat sempurna, dan 3. rumus kuadrat atau yang lebih dikenal dengan rumus abc.
Jikabentuk persamaan trigonometri berbentuk persamaan kuadrat, terlebih dahulu selesaikan persamaan kuadratnya. Setelah itu selesaikan persamaan trigonometri menggunakan ketiga aturan di atas. Contoh Soal dan Jawaban: 2sin 2 x-5sinx+2=0, 0°>x>360° (2sinx-1) (sinx-2)=0 sinx=1/2 atau sinx=2 (tidak memenuhi) sinx=1/2 sinx=sin30° x=30°+k.360°
RumusPersamaan Trigonometri Ada tiga macam rumus periode yang dipakai untuk menyelesaikan persamaan trigonometri. Semua itu dibagi kedalam 3 bentuk, yaitu: 1) sin x = sin α jadi x = α + k.360 o dan x = (180 - α)+k.360 o 2) cos x = cos α jadi x = α + k.360 o dan x = - α+k.360 o 3) tan x = tan α jadi x = α+k.180 o dimana k merupakan bilangan bulat.Dengandemikian, 1. sin x˚=a, diubah dahulu menjadi sin x˚= sin 2. cos x˚=a, diubah dahulu menjadi cos x˚= cos 3. tan x˚=a, diubah dahulu menjadi tan x˚= tan Setelah itu, persamaan-persamaan tersebut diselesaikan dengan menggunakan cara-cara persamaan trigonometri dasar. 12. .