Menyusunpersamaan kuadrat jika jumlah serta hasil kali akar diketahui. X1 x2 x1 2. Kalau sobat paham prinsip mencari akar persamaan kuadrat dan sering latihan soal persamaan kuadrat pasti insyaalloh bisa. Tentukan persamaan kuadrat yang memiliki akar 3 dan 1 2. Persamaan kuadrat ax2 bx c 0 mempunyai akar x1 dan x2.

Halo Nadya terimakasih sudah bertanya di Ruangguru, kakak coba bantu jawab ya Jawabannya adalah 9. Konsep Persamaan kuadrat ax^2 + bx + c = 0, memiliki akar-akar x1 dan x2, maka 1 x1+x2 = -b/a 2 x1 . x2 = c/a Pembahasan Diketahui persamaan kuadrat x^2 − x − 4 = 0 dimana a = 1, b = -1 dan c = -4 Maka nilai dari x1 + x2 = -b/a x1 + x2 = -1/1 x1 + x2 = 1 x1 . x2 = c/a x1 . x2 = -4/1 x1 . x2 = -4 Sehingga nilai dari x1^2 + x2^2 adalah x1^2 + x2^2 = x1 + x2^2 - 2. x1. x2 = 1^2 - 2-4 = 1 + 8 = 9 Jadi hasil dari x1^2 + x2^2 adalah 9. Semoga membantu ya.

Jikax1 dan x2 adalah akar-akar persamaan kuadrat x^2 - 4x + 3 = 0, maka persamaan kuadrat yang akar-akarnya x1^2 dan x2^2 adalah A. x^2 + 10x + 9 = 0 B. x^2 - 10x + 9 = 0 C. x^2 + 4x + 3 = 0 D. x^2 - 4x + 3 = 0 E. x^2 - 4x - 9 = 0. Akar Persamaan Kuadrat. PERSAMAAN KUADRAT. ALJABAR. Matematika. 1. Akar-akar dari adalah x1 dan x2. Jika x1 – x2 = 5, maka p adalah ... a. -8 b. -6 c. 4 d. 6 e. 8Pembahasan Pada soal diketahui PK dengan a = 2, b = -6, dan c = -p x1 – x2 = 5, maka 100=36+8p 100 – 36 = 8p 8p = 64 P = 64 8 P = 8Jawaban E 2. Akar-akar persamaan kuadrat adalah α dan β. Persamaan kuadrat baru yang akar-akarnya α – 2 dan β – 2 adalah ... Pembahasan berarti a = 1, b = 2, dan c = 3 Akar-akar PK di atas adalah α dan β, maka α + β = -b/a = -2/1 = -2 α . β = c/a = 3/1 = 3 persamaan kuadrat baru dengan akar α – 2 dan β – 2 adalah Jawaban C 3. Jika a dan b adalah akar-akar persamaan maka persamaan kuadrat yang akar-akarnya -1/a dan -1/b adalah... Pembahasan berarti a = 2, b = -3, dan c = -5 Akar-akar persamaan PK di atas adalah a dan b, maka a + b = -b/a = -3/2 = 3/2 a . b = c/a = -5/2 persamaan kuadrat baru yang akar-akarnya -1/a dan -1/b adalah Jawaban D 4. Persamaan mempunyai akar real sama, maka nilai p sama dengan ... a. -3 atau 1 b. -1 atau 3 c. 1 atau 3 d. 1 atau -2 e. -2 atau 3 Pembahasan kalikan silang , jadi a = 1, b = -3 - p, dan c = 3 + 2p Syarat sebuah persamaan memiliki akar real sama adalah D = 0 p-3p+1=0 p = 3 atau p = -1 Jawaban B 5. Jika x1 dan x2 akar-akar persamaan kuadrat maka persamaan yang akar-akarnya adalah... Pembahasan , berarti a = 2, b = 1, dan c = -2 PK di atas memiliki akar-akar x1 dan x2, maka x1 + x2 = -b/a = -1/2 x1. x2 = c/a = -2/2 = -1 PK baru dengan akar adalah Maka, PK yang baru Jawaban B 6. Akar-akar persamaan kuadrat , p > 0 adalah . Persamaan kuadrat baru yang akar-akarnya adalah ... Pembahasan , a = 1, b = -p, dan c = 4 PK di atas memiliki akar , maka PK baru dengan akar adalah... PK yang baru adalah Jawaban E 7. Jika jumlah kedua akar persamaan kuadrat sama dengan nol, maka akar-akar itu adalah... a. 3/2 dan -3/2 b. 4 dan -4 c. 5/2 dan -5/2 d. 5 dan -5 e. 3 dan -3 Pembahasan , a = 1, b = 2p – 3, dan c = x1 + x2 = 0 -b/a = 0 -2p – 3/1 =0 -2p + 3 = 0 2p = 3 p = 3/2 Maka PK di atas menjadi x-4x+4=0 x = 4 dan x = -4 Jawaban B 8. Persamaan kuadrat mempunyai akar-akar x1 dan x2 dengan x1 ≠ 0 dan x2 ≠ 0. Persamaan kuadrat yang akar-akarnya 1/x1 dan 1/x2 adalah ... Pembahasan , a = 3, b = -a, dan c = b x1+x2=-b/a=-a/3=a/3 PK dengan akar 1/x1 dan 1/x2 adalah PK yang baru adalah Jawaban A 9. Jika selisih dua bilangan bulat positif adalah 1 dan jumlah kuadratnya adalah 4, maka jumlah dua bilangan itu sama dengan... a. √2 b. √7 c. 3 d. √11 e. √12 Pembahasan Misalkan bilangan tersebut A dan B, maka A – B = 1 4 - 2AB=1 2AB=4-1 2AB=3 Maka = 4 + 3 = 7 A + B = √7 Jawaban B 10. Akar-akar persamaan adalah x1 dan x2. Jika x2 > x1 maka nilai 2x1 + 3x2 = ... a. -12,5 b. -7,5 c. 12,5 d. 20 e. 22 Pembahasan 2x+1x-7=0 x1=-1/2, x2=7 Maka 2x1 + 3x2 = 2 . -1/2 + 3 . 7 = -1 + 21 = 20 Jawaban D 11. Jika x1 dan x2 adalah akar persamaan kuadrat , maka persamaan kuadrat baru yang akar-akarnya x1 + x2 dan adalah ... Pembahasan x1 + x2 = -b/a x1 . x2 = c/a PK dengan akar yang baru x1 + x2 dan adalah PK yang baru adalah Jawaban B 12. Jika akar-akar persamaan kuadrat adalah α dan β maka nilai dari sama dengan ... a. 19 b. 21 c. 23 d. 24 e. 25 Pembahasan , a = 3, b = 5, dan c = 1 α + β = -b/a = -5/3 α . β = c/a = 1/3 maka Jawaban A 13. Ditentukan persamaan dengan x ∊ R. Jumlah kuadrat akar-akarnya akan mencapai nilai minimum untuk p = ... a. -6 b. -4 c. 4 d. 6 e. 8 Pembahasan , a = 1, b = p – 1, dan c = -4 – 5p Jumlah kuadrat akar-akarnya adalah Persamaan kuadrat akan mencapai nilai minimum ketika x = -b/2a x = -12/ = 6 Jawaban D 14. Jika maka 3/x adalah ... a. -1 b. 1 c. 2 d. -1 atau 2 e. -1 atau -2 Pembahasan Maka 3/x=3/3=1 Jawaban B 15. Akar-akar persamaan kuadrat adalah x1 dan x2. Nilai dari =⋯ a. -5 b. -4 c. -1 d. 4 e. 5 Pembahasan , a = 3, b = 1, dan c = -2 x1+x2=-b/a=-1/3 = 1 + 4 = 5 Jawaban E 16. Akar-akar persamaan kuadrat mempunyai beda 10. Pernyataan yang benar berikut ini adalah ... a. Jumlah kedua akarnya 6 b. Hasil kali kedua akarnya -16 c. Jumlah kuadrat akar-akarnya 20 d. Hasil kali kebalikan akar-akarnya -1/16 Pembahasan x1- x2 = 10,maka x1=10 + x2 Pada persamaan kuadrat di atas, diketahui x1+x2=-b/a=-6/1=6 x1 + x2 = 6, ganti x1 dengan 10 + x2 10 + x2 + x2 = 6 10 + 2x2 = 6 2x2 = 6 – 10 2x2 = -4 x2 = -4 2 x2 = -2 Jadi, x1 = 10 + x2 = 10 + -2 = 8 Mari kita bahas satu persatu opsi di atas a. Opsi A benar, karena x1 + x2 = 8 + -2 = 6 b. Opsi B benar, karena x1 . x2 = 8 . -2 = -16 c. Opsi C salah, karena d. Opsi D benar, karena 1/x1 .1/x2=1/8 .1/-2=1/-16 Jawaban - 17. Jika p dan q adalah akar-akar persamaan maka persamaan kuadrat yang baru yang akar-akarnya 2p + 1 dan 2q + 1 adalah ... Pembahasan , a = 1, b = -5, dan c = -1 p+q = -b/a = -5/1 = 5 = c/a = -1/1 = -1 PK dengan akar-akar 2p + 1 dan 2q + 1 adalah 2p + 1 + 2q + 1 = 2p + 2q + 2 = 2 p + q + 2 = 2 . 5 + 2 = 12 2p + 1 2q + 1 = 4pq + 2p + 2q + 1 = 4pq + 2 p + q + 1 = 4.-1 + 2 5 + 1 = -4 + 10 + 1 = 7 Jadi, PK yang baru adalah Jawaban D 18. Akar-akar persamaan adalah p dan q, p + 2q = 6 dan p ≠ 0. Nilai dari p – q = ... a. 4 b. 2 c. -2 d. -6 e. -8 Pembahasan , a = 1, b = p, dan p + q = -b/a = -p/1 = -p p + 2q = 6 p + q + q = 6 p + q + q = 6 -p + q = 6 -p – q = 6 p – q = -6 Jawaban D 19. Akar-akar persamaan kuadrat adalah α dan β. Persamaan kuadrat baru yang akar-akarnya α + 2 dan β + 2 adalah ... Pembahasan , a = 3, b = -12, dan c = 2 Persamaan kuadrat di atas memiliki akar α dan β, maka α + β = -b/a = -12/3 = 4 α . β = c/a = 2/3 akar-akar baru adalah α + 2 dan β + 2, maka α + 2 + β + 2 = α + β + 4 = 4 + 4 = 8 α + 2 . β + 2 = α . β + 2α + 2β + 4 = α . β + 2α + β + 4 = 2/3 + + 4 = 2/3 + 8 + 4 = 2/3 + 12 = 2/3 + 36/3 = 38/3 Maka, persamaan kuadrat yang baru adalah Jawaban A 20. Akar-akar persamaan adalah p dan q. Jika p = 2q, untuk p > 0 dan q 0 dan q < 0, maka p + q = -b/a = -2a - 3/1 = -2a + 3 p . q = c/a = 18/1 = 18 karena p =2q maka p . q = 18 2q . q = 18 q = √9 q = 3 Karena p = 2q, maka p = 2 . 3 = 6 Nilai a adalah p + q = -2a + 3 6 + 3 = -2a + 3 9 = -2a + 3 2a = 3 – 9 2a = -6 a = -6/2 a = -3 nilai dari a – 1 = -3 – 1 = -4 jawaban B 21. Akar-akar persamaan adalah α dan β. Nilai minimum dari dicapai untuk a = ... a. -7 b. -2 c. 2 d. 3 e. 7 Pembahasan , a = 1, b = -a – 3 , dan c = 4a Persamaan kuadrat di atas memiliki faktor α dan β, maka α + β = -b/a = -a – 3/1 = a + 3 α . β = c/a = 4a/1 = 4a Mencapai nilai minimum ketika a = -b/2a = -14/ = -7 Jawaban A 22. Garis y = 2x + k memotong parabola dititik x1,y1 dan x2,y2. Jika maka nilai k = ... a. -1 b. 0 c. 1 d. 2 e. 3 Pembahasan Karena Garis y = 2x + k memotong parabola maka Karena berpotongan di x1,y1 dan x2,y2, maka akar-akar dari persamaan kuadrat tersebut adalah x1 dan x2, maka x1 + x2 = -b/a = -3/1 = 3 x1 . x2 = c/a = 3 - k/1 = 3 – k = 9 – 6 + 2k = 7 = 3 + 2k = 7 = 2k = 7 – 3 = 2k = 4 = k = 4/2 = k = 2 Jawaban D 23. Kedua persamaan dan mempunyai akar-akar real untuk ... a. -1/2 ≤ k ≤ 2 b. -1/4 ≤ k ≤ 1 c. -1/8 ≤ k ≤ 1 d. -1/8 ≤ k ≤ 2 e. -1/8 ≤ k ≤ 1 Pembahasan Persamaan kuadrat memiliki akar-akar real jika memenuhi D ≥ 0, maka Untuk persamaan 4 – 4k ≥ 0 -4k ≥ -4 k ≤ -4/-4 k ≤ 1 untuk persamaan 1 + 8k ≥ 0 8k ≥ -1 k ≥ -1/8 jadi, nilai k yang memenuhi adalah -1/8 ≤ k ≤ 1 jawaban C 24. Himpunan penyelesaian persamaan adalah ... a. Φ b. {0} c. {-2} d. {0, -2} e. {0, 2} Pembahasan x x+2=0 x = 0 atau x = -2 jawaban D 25. Diberikan persamaan kuadrat . Satu akarnya merupakan kelipatan 4 dari akar yang lain. Maka a, b, dan c memenuhi hubungan... Pembahasan , misalkan memiliki akar-akar p dan q. Pada soal diketahui p =4q Maka p + q = -b/a 4q + q = -b/a 5q = -b/a q = -b/5a p . q = c/a 4q . q = c/a Jawaban E Rumusabc adalah rumus yang dapat digunakan untuk mencari akar dari suatu persamaan kuadrat. Salah satu contoh persamaan kuadrat seperti ini: Faktorisasi persamaan kuadrat 2x² + 5x + 3 = 0. X 2 + 8x + 24 = 0. Akar persamaan kuadrat baru (x1 + k) dan (x2 + k) Kuadrat merupakan makna lain dari angka yang dipangkatkan dengan nilai 2. January 11
Kelas 9 SMPPERSAMAAN KUADRATAkar Persamaan KuadratDiketahui x1 dan x2 adalah akar-akar persamaan kuadrat x^2 + 4x + a - 4 = 0. Jika x1 = 3x2, nilai a yang memenuhi adalah...Akar Persamaan KuadratPERSAMAAN KUADRATALJABARMatematikaRekomendasi video solusi lainnya0244Jika akar-akar persamaan kuadrat 2x^2 + 5x - 3 = 0 adalah...0314Persamaan 2x^3 + 3x^2 + px + 8 = 0 mempunyai sepasang aka...0153Jika nilai diskriminan persamaan kuadrat 2x^2 - 9x + C = ...Teks videoHaiko fans diketahui x1 dan x2 adalah akar-akar persamaan dari X kuadrat + 4 x + a Min 4 akan sama dengan nol di mana bentuk umum persamaan kuadrat adalah p x kuadrat + Q X kemudian + R akan sama dengan nol lanjutnya maka p nya adalah 1 kemudian suhunya adalah 4 selanjutnya r nya adalah A min 4 kemudian seperti yang kita tahu jika kita mencari X1 ditambah dengan x 2 maka akan = Min Q saljunya Jika x1 * X2 akan = R sekarang akan kita masukkan ya Berarti untuk yang pertama1 plus dengan x 2 di mana kita lihat x 1 adalah 3 * X2 artinya jika x1 ditambah dengan x 2 akan sama dengan x satunya 3X 2 kemudian ditambah dengan x 2 maka k = 4 x 2 maka 4 x 2 akan sama dengan min Q per p maka Min 4 kemudian perfectnya 1 artinya Min 4 maka x 2 akan = Min 4 per 4 maka x 2 nya adalah min 1 jutanya kita akan mencari X1 Nya maka X satunya akan sama dengan 3 dikali x 2 y min 1 x satunya adalah min 3 Tanjung nya x 1 x dengan x 2 adalah minus 1 dikali dengan2 atau F1 nya min 3 ya min 3 dikali minus 1 berarti 33 akan = r r nya adalah A 4 kemudian penya 1 dengan demikian dikalikan silang 3 k = 4 maka akan = 3 + 4 a nilai a adalah 7 nilai a yang memenuhi syarat adalah yang sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Menyusunpersamaan kuadrat yang telah diketahui akar-akarnya. Untuk melihat kumpulan rumus yang digunakan di sini, Contoh 1 (SKALU 1978) Bila x1 dan x2 adalah akar-akar persamaan kuadrat x 2 - 6x - 5 = 0, maka x1 2 + x2 2 adalah.. A. 26 B. 31 C. 37 D. 41 E. 46 . Pembahasan: Persamaan x 2 - 6x - 5 = 0 memiliki koefisien a =1, b = -6, dan
HOME» CONTOH PERSAMAAN KUADRAT » CONTOH SOAL MATEMATIKA » PERSAMAAN KUADRAT PEMBAHASAN SOAL JUMLAH DAN HASIL KALI AKAR 1. Diketahui x1 dan x2 adalah akar-akar dari persamaan 2x2 − 4px + 8 = 0. Jika x1 + x2 = 10, maka nilai p yang memenuhi adalah .. A. 10 D. 4 B. 8 E. 2 C. 5 Pembahasan : Untuk mengerjakan soal seperti ini, yang harus
SoalDiketahui x 1 dan x 2 dengan x 1 < 2 adalah akar-akar persamaan kuadrat ax 2 + bx + c = 0. Diketahui x 1 dan x 2 dengan x 1 < 2 adalah akar-akar persamaan kuadrat ax 2 + bx + c = 0. Jika x 1 + x 2 = 3 dan x 1.x 2 = 2, maka persamaan kuadrat baru yang jumlah akarnya _ dan hasil kali akarnya _ adalah .
Jikax1, dan x2 adalah akar-akar persamaan kuadrat ax2 + bx + c = 0, maka: a) Jumlah akar-akar persamaan kuadrat : Diketahui akar-akar persamaan kuadrat 2x2 - 4x + 1 = 0 adalah a dan b. Persamaan kuadrat baru yang akar-akarnya dan adalah a. x2 - 6x + 1 = 0 b. Jadix¹ dan x²adalah sejumlah akar yang didapat dari persamaan kuadrat. Rumus Mencari X1 Dan X2. Gradien garis melalui dua buah titik (x1, y1) dan (x2, y2) tidak selalu bahwa sebuah garis tersebut melewati titik pusat (0,0). Kalau sobat paham prinsip mencari akar persamaan kuadrat dan sering latihan soal persamaan kuadrat pasti insyaalloh bisa. 3 Jumlah dan hasil kali akar-akar persamaan kuadrat Persamaan kuadrat ax2 + bx + c = 0 mempunyai akar x1 dan x2. ax2 + bx + c = 0 x2 + x + = 0 Karena x1 dan x2 merupakan akar-akar persamaan kuadrat, maka : Jadi, , . Contoh: Akar-akar x2 - 3x + 4 = 0 adalah x1 dan x2. Dengan tanpa menyelesaikan persamaan tersebut, hitunglah nilai: x1 + x2 d .
  • 8t0xbfpw5h.pages.dev/396
  • 8t0xbfpw5h.pages.dev/18
  • 8t0xbfpw5h.pages.dev/279
  • 8t0xbfpw5h.pages.dev/358
  • 8t0xbfpw5h.pages.dev/257
  • 8t0xbfpw5h.pages.dev/440
  • 8t0xbfpw5h.pages.dev/241
  • 8t0xbfpw5h.pages.dev/65
  • diketahui x1 dan x2 adalah akar akar persamaan kuadrat